Стройся!!! Строительство, проекты домов Кровельные работы   
Поиск Проекты домов Дом, участок, сад Стройка, отделка, ремонт Инж. системы Интерьер, дизайн Статьи Форум, блоги Объявления



Физические свойства

Наверх

Общие сведения о кровельных материалах. Классификация, основные требования || Основные свойства кровельных материалов || Битумные вяжущие материалы. Нефтяные битумы || Кровельные рулонные материалы || Кровельные мастики для рулонных материалов. Классификация мастик || Герметизирующие материалы || Листовые и штучные кровельные материалы. Асбестоцементные кровельные материалы || Теплоизоляционные материалы. Назначение и классификация || Материалы для выравнивающих стяжек и защитного слоя кровель || Окрасочные составы и замазки. Олифы || Минеральные вяжущие вещества. Назначение и классификация || Строительные растворы. Виды и классификация растворов || Общие сведения о крышах, кровлях и об организации кровельных работ. Классификация крыш || Подготовка оснований под кровли. Подготовка поверхности оснований || Устройство кровель из рулонных материалов. Подготовка кровельных материалов || Устройство мастичных кровель. Кровли из битумных, битумно-полимерных и полимерных мастик || Устройство кровель по панелям покрытий повышенной заводской готовности. Комплексные панели || Устройство кровель из штучных материалов. Кровли из мелкоштучных материалов || Кровли из металлочерепицы. Общие сведения || Устройство кровли из листовой стали. Подготовительные работы || Ремонт кровель. Кровли из рулонных материалов || Техника безопасности

Физические свойства || Механические свойства || Химические свойства

Основные свойства кровельных материалов

Физические свойства характеризуют физическое состояние материала, а также его способность реагировать на внешние факторы, не влияющие на химический состав материала. К физическим свойствам материалов относятся плотность, средняя плотность, пористость, водопроницаемость, водостойкость, водопоглощение, атмосферостойкость, морозостойкость, влажность, теплопроводность, теплостойкость (температуроустойчивость), температура размягчения, вспышки и стеклования, укрывистость, вязкость, гибкость, адгезия, газо- и паропроницаемость, усадка или удлинение, огнестойкость.

Плотность — отношение массы материала к его объему без пор и пустот (г/см3, кг/м3, т/м3) вычисляют по формуле p = m/V, где m — постоянная масса материала, г (кг или т); V — объем, занимаемый материалом, без пор и пустот, см3 (м3). Плотность твердых и жидких материалов сравнивают с плотностью воды. Наибольшая плотность воды при 4° С равна 1 г/см3, так как 1 см3 воды имеет массу 1 г.

Средняя плотность — отношение массы материала к его объему в естественном состоянии, т. е. с порами и пустотами. Среднюю плотность pm (г/см3, кг/см3, т/м3) вычисляют по формуле pm = m/Vест, где m — масса материала в сухом состоянии, г (кг или т); Vест — объем материала в естественном состоянии, см3 (м3). Так как при определении средней плотности материала объем берется с учетом пор и пустот, имеющихся в материале, то средняя плотность не является величиной постоянной, а изменяется в зависимости от пористости материала. Плотность и средняя плотность некоторых строительных материалов приведены в табл. 1.

Таблица 1. Плотность и средняя плотность некоторых строительных материалов

МатериалПлотность, кг/м3Средняя плотность, кг/м3
Асбестоцементные листы---1600
Строительная сталь78507850
Гранит2600...28002600...2700
Тяжелый бетон2600...29001800...2500
Керамический кирпич2500...26001600...1900
Плотный известняк2400...26002100...2400
Древесно-волокнистые плиты1500200...250
Стеклопластик2000200
Полистирольный пенопласт105020...40

Большинство строительных материалов имеет поры, поэтому средняя плотность, как правило, меньше плотности. Среднюю плотность каждого материала определяют при влажности, установленной стандартом.

Насыпная плотность определяется для сыпучих материалов (цемент, песок, гравий, щебень). В объем таких материалов включают не только поры (маленькие ячейки в материале, заполненные воздухом или водой) в них, но и пустоты (заполненный воздухом пространства между частицами материала) между зернами или кусками материалов.

Пористость — степень заполнения объема материала порами. Ее определяют как общий объем пор в единице объема материала по формуле П=(1-pm/p)100%, где p — плотность, г/см3; pm — средняя плотность, г/см3. От степени пористости зависят прочность, теплопроводность, морозостойкость, водопоглощение и другие свойства материалов. Чем меньше пористость, тем больше прочность, морозостойкость, теплопроводность, но меньше водопроницаемость.

Водопроницаемость — способность материала пропускать через себя воду под давлением. Степень водопроницаемости зависит от пористости материала, формы и размеров пор. Чем больше в материале незамкнутых пор и пустот, тем больше его водопроницаемость. Водопроницаемость характеризуется коэффициентом водопроницаемости Кв, который равен количеству воды, прошедшей в течение 1 ч через образец материала площадью 1 см2 при постоянном давлении и определенной толщине образца. К водонепроницаемым относятся особо плотные (например, сталь, стекло, битум) и плотные материалы с замкнутыми порами (например, бетон специально подобранного состава).

Водостойкость — способность материала длительное время сохранять прочность при предельном водонасыщении. Водостойкость численно характеризуется коэффициентом размягчения, определяемым по формуле Кразм = Rнас/Rсух, где Rнас — предел прочности материала в насыщенном водой состоянии, Rсух — предел прочности сухого материала. Коэффициент размягчения материалов колеблется от 0 (необожженные керамические материалы) до 1 (стекло, сталь, битум). Материалы с коэффициентом размягчения не менее 0,8 относятся к водостойким. Их разрешается применять в строительных конструкциях, возводимых в воде, и в местах с повышенной влажностью.

Водопоглощение — способность материала поглощать и удерживать в своих порах воду — характеризуется количеством воды, которое поглощает сухой материал при погружении и выдерживании в ней, отнесенным к массе сухого материала (водопоглощение по массе Wм) или к объему материала в сухом состоянии (водопоглощение по объему Wоб). Водопоглощение по массе показывает степень увеличения массы материала (за счет поглощенной воды), подопоглощение по объему — степень заполнения объема материала водой. Водопоглощение зависит от плотности материала и строения пор.

Как правило, при высоком водопоглощении материала снижаются его прочность и морозостойкость. Для уменьшения водопоглощения искусственных материалов при их изготовлении стремятся получить равномерно распределенные мелкие замкнутые поры. Водопоглощение выражают относительным числом или в процентах и вычисляют по формулам: Wм = [(m2-m1)/m1]100%; Wоб = [(m2-m1)/Vест*pH2O]100%, где m1 — масса материала в сухом состоянии, г; m2 — масса материала в насыщенном водой состоянии, г; Vест — объем материала в сухом состоянии, см3; pH2O - плотность воды, г/см3. Водопоглощение по массе рулонного кровельного материала рубемаста за 24 ч составляет не более 1,5 %, толя — 12...20 %.

Влажность — степень увлажнения материала, зависящая от влажности окружающей среды, структуры и свойств самого материала. Для оценки влажности пользуются показателем влажности — отношением количества влаги, содержащейся в материале, к массе материала в абсолютно сухом состоянии. Влажность материала определяют в % по формуле W = [(m2-m1)/m1]/100, где m1 — масса сухого образца, г; m2 — масса влажного образца, г. С увеличением влажности средняя плотность и теплопроводность строительных материалов повышаются, а прочность снижается.

Атмосферостойкость — способность материала длительное время сохранять свои первоначальные свойства и структуру после совместного воздействия погодных факторов (дождя, света, воздуха, облучения и колебаний температуры) — оценивается временными показателями (час, сутки, месяц, год) или в баллах по специальной шкале.

Морозостойкость — способность материала в насыщенном водой состоянии выдерживать многократное число циклов попеременного замораживания и оттаивания без видимых признаков разрушения и значительного понижения прочности. Морозостойкость асбестоцементных кровельных материалов определяют методом многократного попеременного замораживания и оттаивания насыщенных водой образцов. Асбестоцементные волнистые листы и детали к ним должны быть морозостойкими и выдерживать без каких-либо признаков расслоения или повреждения 25...50 циклов попеременного замораживания и оттаивания. Морозостойкими являются плотные материалы, имеющие малую пористость и большое количество замкнутых пор. Морозостойкость имеет большое значение при выборе материалов для ограждающих конструкций и наружной отделки.

Теплопроводность — способность материала передавать через свою толщу тепловой поток, возникающий из-за разности температур на противоположных поверхностях. Различные материалы проводят теплоту по-разному: одни — быстрее (например, металлы), другие — медленнее (теплоизоляционные материалы). Количественным показателем теплопроводности различных тел служит коэффициент теплопроводности. Теплопроводность L измеряется количеством теплоты, проходящей за 1 ч через образец материала толщиной 1 м, площадью 1 м2 при разности температур на противоположных поверхностях образца 1° С. Теплопроводность выражается в Вт/(м*К) или Вт/(м*°С).

Теплопроводность зависит от средней плотности и химико-минерального состава материала, его структуры, пористости, влажности и средней температуры материала. Чем больше пористость (меньше средняя плотность), тем ниже теплопроводность материала. С увеличением влажности материала теплопроводность резко увеличивается, т. е. снижаются показатели теплоизоляционных свойств материала. Поэтому все теплоизоляционные материалы следует хранить в помещении или под навесом, а в процессе изоляции конструкций теплоизоляционный слой защищать покровным слоем. Теплопроводность вычисляют по формуле L = qb/(tв-tн), где q — плотность потока теплоты через образец, Вт/м2; b — толщина образца, м; tв, tн — температура верхней и нижней поверхностей образца, °С или К.

Теплоемкость — количество теплоты, которое необходимо подвести к телу, чтобы повысить его температуру на 1°С. Теплоемкость, отнесенная к единице массы, называется удельной теплоемкостью и выражается в Дж/(кг*К) или Дж/(кг*°С).

Теплостойкость (температуроустойчивость) — способность материала сохранять форму, не стекать и не сползать с поверхности конструкции под определенным уклоном и при определенной температуре. Она зависит в основном от физико-механических свойств и структуры материала, вида и количества наполнителя. Мастики, обладающие небольшой теплостойкостью, имеют большую гибкость, а мастики с высокой теплостойкостью — меньшую. Для получения мастик требуемой теплоемкости легко- и тугоплавкий битум сплавляют в различных соотношениях.

Температура размягчения (ГОСТ 11506—73) оценивается температурой среды, при которой вяжущее вещество (например, битум), залитое в кольцо заданных размеров, размягчается и под действием массы металлического шарика выдавливается из него, касаясь контрольного диска (основания) аппарата. Этот условный показатель характеризует изменение вязкости веществ при повышении температуры. Например, температура размягчения кровельных битумов (ГОСТ 9548—74) БНК 45/180 - 40...50°С, БНК 90/140 и БНК 90/30 — 85...95°С.

Температурой вспышки масла или нефтепродукта (ГОСТ 4333—87) называют температуру, при которой пары нефтепродукта, нагреваемого в открытом тигле, образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ней пламени. Температура вспышки битума БНК 45/180 и БНК 90/40 — не ниже 240° С.

Температура стеклования — температура, при которой материал становится хрупким. Температура стеклования битума БНК 90/40 не выше - -20°С, а битума БНК 90/30 — не выше -10° С. Существует единый метод определения температуры стеклования, заключающийся в фиксировании температуры, при которой появляются трещины в слое, например, битума, нанесенном на стальную пластинку, охлаждаемую с постоянной скоростью и подвергаемую периодическому изгибу.

Укрывистость — способность материала при минимальном расходе образовывать на окрашиваемой поверхности сплошную пленку. Единицей измерения укрывистости является расход материала в граммах на 1 м2 окрашиваемой поверхности.

Адгезия — сопротивление отрыву или сдвигу материала, нанесенного на изолируемую поверхность. Например, адгезия битумно-найритовой композиции при отрыве от бетонной поверхности достигает 0,5 МПа. Адгезия к бетону холодной асфальтовой мастики ИИ-20 при 20°С составляет 0,23 МПа, а при предварительной огрунтовке пастой — 0,43 МПа.

Газопроницаемость материала характеризуется количеством газа, проходящего через образец определенного размера при заданном давлении. Строительные материалы с большой пористостью обладают повышенной газопроницаемостью, хотя на степень газопроницаемости влияет не только суммарное значение пористости, но размер и характер пор. Для устранения этого явления в ограждающих конструкциях устраивают газонепроницаемые слои.

Паропроницаемость — способность материалов пропускать водяные пары, содержащиеся в воздухе, под действием разности их парциальных давлений (парциальное давление - давление компонента идеальной газовой смеси. Парциальное давление водяного пара равно давлению, которое он оказывал бы, занимая весь объем смеси) на противоположных поверхностях слоя материала. С повышением температуры парциальное давление водяных паров увеличивается. Таким образом, водяные пары стремятся попасть в область меньшего давления, т. е. на сторону слоя материала с меньшей температурой. Этим объясняется увлажнение изоляции, применяемой для поверхности с отрицательными температурами. Влага, проникая в слой изоляции с теплой стороны, увлажняет изоляцию, а при температуре ниже нуля замерзает. Это вызывает ухудшение свойств изоляции и ее разрушение. Паропроницаемость характеризуется коэффициентом, который определяется количеством водяных паров в граммах, проходящим в течение 1 ч через слой материала площадью 1 м2 и толщиной 1 м при разности давлений водяного пара на противоположных поверхностях 133,3 Па. Размерность этого коэффициента — кг/(м*ч*Па).

Усадка или удлинение — изменение линейных размеров материала под воздействием изменения температуры, влажности, солнечной радиации или в результате процессов, происходящих в материале (старение, вулканизация, полимеризация). Для рулонных кровельных материалов (изол и др.) характерны относительное и остаточное удлинения.

Огнестойкость — способность материала выдерживать без разрушения воздействия высоких температур (огня). Огнестойкость определяется степенью возгораемости конструкций и материалов, применяемых для строительства здания. Строительные материалы и конструкции по возгораемости разделяют на три группы: несгораемые, трудносгораемые и сгораемые. Несгораемые материалы под воздействием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются. К ним относятся все искусственные и природные неорганические материалы, применяемые в строительстве (камень, металлы и др.). Трудносгораемые материалы под воздействием огня или высокой температуры воспламеняются, тлеют или обугливаются и продолжают гореть или тлеть при наличии источника огня, а после его удаления горение и тление прекращаются (асфальтобетон, минераловатные плиты). Сгораемые материалы под воздействием огня или высокой температуры воспламеняются и тлеют. После удаления источника огня они продолжают гореть и тлеть. К этой группе относятся органические материалы, не отвечающие требованиям, предъявляемым к несгораемым или трудносгораемым материалам. Конструкции из сгораемых материалов можно сделать трудносгораемыми или несгораемыми, защитив их несгоремыми материалами. Пределы огнестойкости конструкций определяются временем в часах от начала испытания конструкции на огнестойкость до возникновения сквозных трещин, повышения температуры на необогреваемой поверхности до 140...180°С или обрушения конструкции.

Механические свойства


---

Ссылки на другие страницы сайта по теме «строительство, обустройство дома»:




© 2000 - 2003 Oleg V. Mukhin.Ru™


Проект K-304-2P